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Abstract. The stability of composite spherically symmetrical adiabatic fluid spheres consist-
ing of a core and an envelope is examined on the basis of general relativity, the core and
envelope being mixtures of ideal gas and isotropic radiation for which the ratio 8 of the gas
pressure to the total pressure is taken to be a small (different) constant. The stability of these
modelsis discussed on the basis of binding energy, which is considered to be a function of the
total radius, R, of the configuration. It is found that the critical radius, R., at which
instability sets in is strongly dependent on the position of the interface separating the core
from the envelope and also upon the values of B in the core and envelope.

1. Introduction

Considering static spherically symmetrical fluid spheres in general relativity Tooper
(1964) found that although a negative binding energy is a necessary condition for
nstability it is not a sufficient condition. Also Fowler (1964) argued on physical grounds
that instability should set in at the first maximum of the binding energy with respect to
the total radius, R, for a fixed rest mass. Using a post-Newtonian approximation to the
fist order in Rg/R where Ry is the Schwarzschild radius, it was found that instability
®isinat a critical radius R given by

R._G-n)
RSSB

v'h.ere {»isanumerical constant depending on the polytropicindex n and where § is the
ratoof the gas pressure to the total pressure and is assumed to be a very small constant
throughout the model.
) Sl}Ch l_lomogeneous models as studied here are, of course, a great over-
mphﬁ@tlor}. All stars exhibit some form of composite nature, this being especially
g;onounced in white dwarfs and red giants. The core, which houses the internal source
char:uclea}- energy, is represented by one set of equations whilst the envelope is
acterized by another :
» for massive stars it has been shown by Hoyle and Fowler (1964) that pro-
they behave as polytropes then only when the polytropic index n=3 is B a
B~ (4;‘;"5;633; thr?/léghout t'he model being in fact given approximately by
incregs (Mo/M)*2. In rqahty B is expected to vary throughout any stellar model
usof & as the surface is regched. The introduction of an envelope with larger
iable anthat of the core without unduly complicating the model would thus be a
Step forward. However, it must be emphasized that a polytropic equation of
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state and indeed Tooper’s slightly more realistic equation of state (21), which we Wl
use throughout this paper, are over-simplifications and are inadequate for applicatiogs

to stars.
In this paper we derive an expression for the critical radius R, of compasige

spherically symmetrical models for which the core and envelope are both assumeg tobe
mixtures of ideal gas and radiation, the value of the constant 8 being larger in b
envelope than in the core.

2. Equations of state and characteristic equations for core and envelope

2.1. Equations of state for core and envelope

The equation of state for a mixture of ideal gas and isotropic radiation for which 8 is,
small constant is given by Tooper (1965)

p=K(B)p;®  wherepc’= pg°2+y—l—;1 K(Bpg+3(1-BKB;” ()
where p, is the density of the rest mass of the gas, v the ratio of specific heats of the gas
and pc” is the total energy-density due to all causes. The constant K(B) is given by

K(B)= [(“%)4% L gf ]1/3 (22)

where the other symbols have their conventional meanings, and the total pressure pis
made up of both gas pressure and radiation pressure.
Equation (2.1) may be written in the form

p=K(B)p;” pc’=pgc®+Ap (23)

where
A=(B/y-1)+3(1-B). 24

The appropriate equations of state representing core and envelope are now defined
by choosing the relevant value of the constant A.

2.2. Characteristic equations for core and envelope

2.2.1. Core. Throughout this paper we used a co-moving coordinate system at rest‘with
respect to the fluid such that the spherically symmetrical line element may be wnten

ds®=—e* dr*—r*(d¢*+sin%@ d¢?)+e” d’.
In these coordinates the equations of hydrostatic equilibrium in general relativity
are (Volkoff and Oppenheimer 1939)

1-2GM(r)/rc®> ,dp GM(r) 47G , _ (25
p+p02 r'drT e +—-r'p=0
dM(r)/dr = 4mrp. @8
Defining o by
@n

0 =pe/pe.c’ = (K(B)/c*)pgl?
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subscript ¢ denotes central values, then defining the dimensionless variables £, 6

od V) bY

ps =050’ (2.8)
r=af (2.9)
Mr=4mp,a’V(£) (2.10)

+here 1 is the distance from the centre, M, is the mass inside radius r and
a’=oac’/nGp,, (2.11)
equations (2.5) and (2.6) become

1-8aV(§)/¢ ,.d6 394
———_1+(1+A)00§ d§+V(§)+a-§0 0 (2.12)

dv/de=£20°(1+ Aob). (2.13)

These are the general-relativistic equations of hydrostatic equilibrium in the core and
are to be solved subject to the usual boundary conditions

8(0)=1 V(0)=0 (d6/d¢~>0as £-0). (2.14)

Unlike the complete model, the total radius and mass of a model cannot, in this case,
be defined since the solutions to equations (2.12) and (2.13) do not extend to the
surface. We can, however, define the interfacial values of mass and radius (the interface
being the point where the core joins the envelope).

The interfacial radius, r; is given by

L= a§i ' (2. 15)
and the interfacial vatues of the gas density and pressure are respectively

Pa=pg.0; (2.16)
and

Pi=p.87 = K(B)pe, 7. (2.17)
Hence, the total energy density at the interface is given by

pic® = puc®+ Ap; (2.18)
ad the mass inside the interface is

Mi=4mp, o> V(g). (2.19)

22 ' . .
2 Envelope. We shall take the equation of state within the envelope to be of the

form as (2.3) usi i - .
: nga subscript 1t
Sttt then becomes g pt 1 to denote values in the envelope. The equation of

=K (B,)pl? prc*=p, +Ap,. (2.20)
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By analogy with the core we introduce the dimensionless variables ¢ and 4 defineg
by

Pg: = p8c¢3 (2.21)
where the value p,_is identical to that in equation (2.8) and

r=em Q)

Similarly we define o, and a, such that

o =(K; (ﬁl)/cz)l’;:3 2.3

n= Kl(ﬁl)P:c/3¢4 (2.249

M, =4mpyaiVi(n) (225
and

at=0,c*/nGp,,. (2.26)

The equations of hydrostatic equilibrium for the envelope then take on the form

1-80,Vi(n)/n ,d¢ 3,4
1+(1+A)o¢ n dn im+ome™=0 2.7
51_1_—_

dn

Although in general the solutions to (2.27) and (2.28) will not be the usual
general-relativistic generalizations of the Lane-Emden solutions since they do not
extend to the centre, we can, nevertheless (Hargreaves 1972), define the total mass,
radius etc of the model. The outer surface is taken to correspond to the smallest positive
value 7, for which

¢ (1+A0:0). (2.28)

¢(ns)=0.
The total radius and the total mass are then given by
R=an, 229
and
M=dmp a;Vi(n,). (230)

Similarly, the interfacial values of the various parameters within the envelope may
be written

r=agm; 231
py= Kl(Bl)P;cls‘ﬁ? @3
PenC? = py.b? (2.33)
and
1= P’ +Arpy, 23
and the mass inside r; given by
@235

M, =4mp a3V, (m).
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3 Interfacial boundary conditions

tions of equilibrium, both in the core and in the envelope, are solved subject to

undary conditions at the interface.

bo . . . .
e pressure is to be continuous everywhere, including the interface, the values

ﬁi:;n:; to this quantity in equations (2.17) and (2.32) must be identical. Thus

pi=pn= KBy = K\(Bypst:- R
Using the definitions of o and o; we have

o1/0=K\(B1)/K(B) (3.2)
«that on using (3.2), (3.1) and the definitions of 6 and ¢ we obtain

o/o= (6./¢)". 3.3)

We can obtain further relations from the fact that the respective values of r; and M;
incore and envelope must be identical. Hence

n=a=am; 3.4
and

Mi=47rpgca3V(§i) =47Tcha?V1(Tli)- ' (3.5)
This gives

V(g =aiVi(n) (3.6)
[v:4

mi=(a/a)&=(0/01)"?¢ (3.7)
and

Vi(n) =(e/a)’ V(&) = (0/a1)** V(). (3.8)

‘ Qne further condition is needed in order to solve the equations of equilibrium and
thisis afforded by the continuity of temperature. This is chosen since it has been shown
gz D&l:rg;pal and Gehlot (1971) that density may have discontinuity across the

undary.

Since we are considering a perfect gas

_1 (_k_)
p 5 \nH p,T (3.9)
ths, considering interfacial values of pressure we obtain
(1/BY(k/ uH)pg 67 Ti= (1/B1)(k/ 1 H)pe 67 T, (3.10)

W ‘ !

anh:re # and p, are the values of the mean molecular weights of the gases in the core
enve.lqpe respectively.
Rewriting we have

(~B/B:) 1/ py) = (6:/ )’ = (o) o)™, (3.11)

“‘lel above boundary conditions (3.3), (3.7), (3.8) and (3.11) are sufficient to solve
®quations (2.12), (2.13), (2.27) and (2.28).
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4. Binding energy

We define the binding energy E, of a star as the total energy of the bound
exclusive of the rest mass energy of the unbound particles dispersed to infinity atzery
temperature. Hence

Eb=(Mog"'M)C2. (41)

In this expression, My, is the rest mass of the gas and M is the total mass of the stz
For our composite model we can write (4.1) as

& & n,
E,,:J 4apc® e’ dr+J dmp,c® er? dr—j 4mpc’r dr—J’ 47pcr dr
(4]

L 0 n

(42)

where the ‘proper’ element of volume has been employed to calculate the rest mass 7
Substituting for e M2 and eliminating pg We can write

-E,= j i4vrAp[1—(2GM,/rc2)]_”2 2dr+ f 47Api[1-(2GM,/rc*) 1P dr
0

n

&
+f 4mpc{1-[1-Q2GM./rc*)] V3 r* dr
0

+J"’4wplc2{1 —[1-Q2GM.,/re)T V3 dr 43)

i

where any dynamical energy arising from bulk motions throughout the star has been
neglected since we are considering the state of hydrostatic equilibrium.
In terms of the dimensionless variables £, 6, V, , ¢, V1, equation (4.3) becomes

_.Eb=<é_1)[_§_]‘1f_"is_ (_C_:_-l_)s/zL vee® d§+é ZzzM3 (2)7/24{& V§94d§}

3 /LRV\(n)’ Vi(ny)’ )
<é3l—1)<%f " Vine? d’”ﬁl}z_%%—j(ﬁﬂ Vi)
e 2
(2" R—‘Z—% [Mviorad
+(%i_§)<§3f%r V2e® dn
3?] %%TJ Vi dn) 4
where we have used
@5

Rs/R =2GM/Rc* =80, Vi(ny)/7s.
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terms and neglecting those of the order (2GM/Rc?)’ and above we

Collecting 1 those
t-Newtonian approximation

puain it the POS

e IR

l<ﬁ_ )_17_<_&) [ ™ 3
+2 3 ! Vl("'ls) R/ )y Viné dn
0.)7/2 nz (Rs

a8 v

A, n? (Rs)zj"s .
Uy — — | — ‘/ d
+48(Al b Vin)’ \R/ Uy K

SR
3a_\ < R\ v
*I\372 (a'l vy \r) L Ve d¢

3(A; 1) n: (Rs)zr 2 .3
+\T 5 3 Vi ¢’ dn. 4.6
4<3 2) Vimy \R/ J, 1 ¢ dn (4.6)

This may be written

~

e x(Z)- &) @

* v aen(5i-1) | vino an) “3)

i

v= -711(’—515)_3 [(i’-)m Aa-1 L " evet ae +’:—§(A1 - l)f nV*dn

o 48

3<A 1)(0)7/2ri 374, 1\ (™.
) [ vrsed(@Y [ veed
i3l | VedET )] Vierdn) 4.9)

Mgc? be shown that (4.6) reduces exactly to the expression for binding energy
CXtenl:lethby Fowler (1964) for a complete polytropic model of index three providing we
g e mterfac&? to the surface ancll make the same assumptions as Fowler that A =3
: ei:ls‘m tlhe classical term where GA 1) =1 Then from figure 1 which shows the
vl 0‘;“3“'55 binding energy as a function of the relativistic parameter ¢ for various
s of ,lzlissumlpg that the interface is extended to the surface so that the model
n0del WOi 1dcore, it can be seen that, except perhaps for o =0-005 and g =0-1, these
atipatn thbe unstable fqr all.values of B and o which we are considering. Thus
enveope f%)r ¢ results exhibited in figures 2 and 3, for models consisting of core and
t1velope exe, r\;a\nous positions of the interface &, we see that the introduction of an
el congig s a stabilizing influence. Further,.f.rom ﬁggre 3 we see that for small §;

{models comg' qf nearly all envelope) the critical radius is comparatively small so

nsisting of all envelope are very stable.
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Figure 1. Dimensionless binding energy against o- for configurations consisting of all core.

5. Critical radius

Using the expression (4.7) for the binding energy of the model we obtain the value pf the
critical radius, R, by differentiating with respect to the total radius, and equating to

Zero.

d [ E R R}

% (i) = ~x(58) 2= o
Thus

Rs/R.=X/2Y (52

where X and Y are given by (4.8) and (4.9). A summary of values of (R./Rs) for Y?ﬁ"“s
models is given in table 1. It is seen that (R./Rs) depends strongly on the positionof
the interface as well as on the values of 8 and o, and B in the envelope.

6. Numerical results

The equations of hydrostatic equilibrium, in the core ((2.12) and (2.13)) and if te
envelope ((2.27) and (2.28)) were solved numerically using a fourth-order Runge
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Table 1. Summary of values of Rc/Rs and R.K;(pg) X 10? for various values of &, o, 8 and

B1-
& o B B RKy(p,)x10°  R./Rs
0-5 0-005 0-005 0-05 6-52x 107! 72:03
1-0 1-65 71-30
1.5 Y ©
0-5 0-005 0-005 01 1-94x107! 27-18
1-0 6:60x107" 30-93
15 1-58 43-20
2-0 3-30 67-34
2:5 0 0
0-5 0-005 0-01 0-05 1-58 101-27
1-0 2:49 87-69
15 423 101-07
2-0 © ©
0-5 0-005 0-01 01 3-09%x107! 34-13
1-0 7-90x 107! 34-07
15 1-69 44.52
20 328 65-64
2-5 00 o0
0-5 0-005 0-02 0-05 571 128-00
1-0 606 123-18
15 7-20 130-05
20 o] ©
05 0-005 002 0-1 7-49x107" 47-88
10 1-18 41.73
15 2:03 48-57
2:0 341 65-01
25 5:42 91-44
3:0 © ©
05 0-01 0-005 01 545%107 27-30
1-0 1-86 31-46
1-5 0 0
05 0-01 0-01 0-1 864x107" 34-27
}-o 2:21 34-61
5 0 0
05 0-01 0-01 0-5 4-98x1072 2:82
1-0 226 X107t 401
15 664 x1071 675
2:0 162 12-32
2:5 3-60 23-43
gg 7-61 45:59
* [20] [= o}
0-5 0-01 0-02 01 2:08 48-25
1-0 3:30 42-34
;3 570 49-97
* [e 0] o o]
0-5 0-01 0-02 0-5 5-88x1072 3.07
10 2-39%107" 410
15 6-70x1071 672
2:0 1-59 11-98
25 340 22:05
3-0 680 40-66
3'5 oo} o0
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Table 1——continued.
—

& o [ B1 R.K3(pg ) x 107 RyRg
05 0-01 0-05 05 9-89x1072 39
1-0 2-83%10” 442
1-5 698X 10—1 6697
2:0 1-51 117
2:5 2:96 18.94
3.0 523 3109
35 8-34 4768
4-0 0 @
05 0-01 01 05 2:32%107 537
i-0 4.00x 107! 513
15 7-84% 10" 687
2'0 147 ]0.41
25 2:55 1593
30 3-96 2303
35 5-52 31-38
40 699 3913
o1 0-02 0-005 0-05 2-85 12462
03 3-42 87-92
0-5 0 ®
01 0-02 0-005 0-1 3-61%107" 48:03
03 7:59x 107 30-13
05 1-52 2754
07 265 2829
1-0 o ©
01 0-02 0-01 01 1-34 5883
0-3 1-62 4158
0-5 239 3455
0-7 357 3314
1-0 ) ®
01 0-02 0-02 01 524 62:64
03 5-27 5700
0-5 5-68 4899
07 6-64 4443
1-0 © ©

Kutta method. The integrations in equation (4.6) were then evaluated in order to obtain
a numerical result for the binding energy and the ratio of (R./Rs). A summary of th¢
results for various o, 8 and 8, is given in table 1. e
Values of R./Rs were obtained by applying (5.2) to all those models with a posi¥®
binding energy. Those which exhibited a negative binding energy were taken “;
represent unbound systems having an infinite critical radius. A summary of resultS‘:i
the ratio (R./R) against the interfacial radius & is shown in figure 2 for yarious B a8
B1, and o =0-005. e
The interesting fact is that these graphs exhibit a minimum. This can be explan®
because of the rapid increase in mass of these models with increasing &. Since Rfsz'S
directly proportional to the total mass M, of the model, as the mass increasesso does s
Thus, although the critical radius R,, may increase with & for one particular modeh
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140

100

R IR,

~p

0 3 3
¢

Figure 2. R./Rjs against ¢ for o= 0-005.

muease may be completely masked by the increase in Rs. We shall thus consider the
uttical radius,

Toobtain graphs showing the way in which the critical radius varies with £ we make
Beofthe values of V,(n,) obtained at each & from the solutions of equations (2. 12) and

13)and (2.27) and (2.28).
nsider
M=4mp_ a3V (n) oD
50 substituting for a; we have
40_3/2C3 . ‘
M=W Vi(ny)- €2
8e

= S graphs of (R./Ry) against & give us the value of K;(R./M) at various §;, where
¢ /2G. Thus multiplying the value of (R./Rs) at & (call it (R./ Rs),) and the value
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of V,(n.) for this model (call this [ V1(n,)];) we obtain:

1 3/2
(5, Vatnle=Kukatond () (RO 6
where K(p,) = (wG’p,)'/*/4¢’ is a function of the central density, thus
(5, [Vitnl=Katoa) R 6

where
K3(Pg,) = Ksz(Pg,) = (ﬂ'Gpgc) 1282,

Hence, by multiplying our two graphs together and multiplying by o}/ (where s
the value of the relativity parameter in the envelope for the particular mode] ip
question) we can plot a graph of the same form as R, against £ for a model with fixed e
We multiply by o}/? even though o, is a constant throughout one model so asfo
maintain the correct relationship between different graphs with varying o,. Differing
central densities between models are taken acount of by altering the value of K;(p,)
which then has the effect of moving the graph up or down relative to the axis R.K;(p, ).

Plots of R.K;(p,.) against & are shown in figure 3 where a constant central density
has been assumed throughout for all models. It is seen that the critical radius depends
strongly on the position of the interface, increasing steadily for small values of § and
then more rapidly as & increases, the core having more and more effect. Initially (when
the configuration consists mainly of envelope) the value of o for a given small 8,
determines the relative stability of the models, but as & increases (the configuration
consisting of more and more core) the value of R, becomes strongly dependent on the
value of 8 in the core. The effect of o and 8, on the stability of the models is also clearly
demonstrated. Models with o equal to 0-3 and above were found to have no stable
solutions for &=0-5, whereas those models with o equal to 0-2 and below exhibited
stable solutions, stability increasing with decreasing o.

On the other hand those models with larger values of B, in the envelope are seento
be far more stable than those with smaller values of 8, as expected.

Also as the core increases in size the models become more and more unstable, near{y
all becoming unbound before reaching the state where they consist entirely of core. It
interesting, therefore, fo consider under what conditions a model will remain stable
even when the stabilizing effect of the envelope has been removed. For small ¢ and p
we can make use of Fowler’s approximation for the binding energy of 2 complete
polytropic model of index 3:

— Eu/Mc?= —38(Rs/R)+{3(Rs/R)*+. . 63
where
£3=356/m)"Rs. €
For the stability of this model
d/dR(E,/Mc*=0
so that the condition for stability is
7

B= 13-6{3(RS/R)-
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Figure 3. R.K;(p,) against &.
Substituting for (Rs/R) from (4.5) and using (6.6) we obtain

B ?(3/17)1/2(80-1 Vl(ns)/ns) (68)

Itshould be remembered that (6.8) is only an approximation for the mode!s in this
Peper giving us an idea of the size of B in the core needed for the model to remain stable
ml!fi- And as expected the only model to remain stable for the complete range of &
wdin this paper is the only one to satisfy this inequality.
conclusion we see that given a core consisting of matter and radiation for which 3,
m}? of gas pressure to total pressure, is a small constant, the fitting of an enve}qpe
9o this core has o significant effect on the stability of the configuration. The critical
"Sat which instability sets in decreases rapidly as the size of the envelope relative to

1

8 ®re increases. Also the stabilizing effect of the envelope increases with increasing
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