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A&m& The stability of composite spherically symmetrical adiabatic fluid spheres consist- 
ing of a core and an envelope is examined on the basis of general relativity, the core and 
envelope being mixtures of ideal gas and isotropic radiation for which the ratio 6 of the gas 
pressure to the total pressure is taken to be a small (different) constant. The stability of these 
modelsis discussed on the basis of bindingenergy, which is considered to be afunction of the 
total radius, R, of the configuration. It is found that the critical radius, R,, at which 
instability sets in is strongly dependent on the position of the interface separating the core 
from the envelope and also upon the values of 6 in the core and envelope. 

considering static spherically symmetrical fluid spheres in general relativity Tooper 
(1964) found that although a negative binding energy is a necessary condition for 
instability it is not a sufficient condition. Also Fowler (1964) argued on physical grounds 
that instability should set in at the first maximum of the binding energy with respect to 
the total radius, R, for a fixed rest mass. Using a post-Newtonian approximation to the 
fiist order in Rs/R where Rs is the Schwarzschild radius, it was found that instability 
setsin at a critical radius R given by 

where tn is a numerical constant depending on the polytropic index n and where p is the 
m b d  the gas pressure to the total pressure and is assumed to be a very small constant 
boN$Out the model. 
, Such homogeneous models as studied here are, of course, a great over- 
mPlifiQtion. All stars exhibit some form of composite nature, this being especially 
Pronounced in white dwarfs and red giants. The core, which houses the internal source 
dnuchr energy, is represented by one Set of equations whilst the envelope is 
hadeked by another. 
, for massive stars it has been shown by Hoyle and Fowler (1964) that Pro- w behave as polytropes then only when the polytropic index n = 3  is p a 

constant throughout the model being in fact given approximately by 
8”(4’3/k)(M0/M)’’2. In reality p is expected to vary throughout any stellar model 

as the surface is reached. The introduction of an envelope with larger 
‘?Of fl than that of the core without unduly complicating the model would thus be a 

forward. However, it must be emphasized that a polytropic equation Of 
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344 SEBrown andJCHargreaues 

state and indeed Tooper’s slightly more realistic equation of state (21), which we 
use throughout this paper, are over-simplifications and are inadequate for appkQh 
to stars. 

spherically symmetrical models for which the core and envelope are both asumdtoh 
mixtures of ideal gas and radiation, the value of the constant /3 being larger in 
envelope than in the core. 

In this paper we derive an expression for the critical radius Rc of 

2. Equations of state and characteristic equations for core and envelope 

2.1. Equations of state for core and envelope 

The equation of state for a mixture of ideal gas and isotropic radiation for which fi is a 
small constant is given by Tooper (1965) 

where pe is the density of the rest mass of the gas, y the ratio of specific heats ofthegas 
and pc2 is the total energy-density due to all causes. The constant K(B) is given by 

where the other symbols have their conventional meanings, and the total pressure p is 
made up of both gas pressure and radiation pressure. 

Equation (2.1) may be written in the form 

where 

A = ( P l y  - 1) + 3( 1 -P ) .  (2.4) 

The appropriate equations of state representing core and envelope are now defined 
by choosing the relevant value of the constant A. 

2.2. Characteristic equations for core and envelope 

2.2.1. Core. Throughout this paper we used a co-moving coordinate system at restwith 
respect to the fluid such that the spherically symmetrical line element may be writtea 

In these coordinates the equations of hydrostatic equiMxium in general relativiq 

ds2=-eA dr2-r2(d02+sin20 d+2)+e” dt2. 

are (Volkoff and Oppenheimer 1939) 

dM(r)/dr = 4m2p. 

Defining U by 

U = PC/P*C2 = (K(P)/c2)pF 

(2.5) 

(2.6) 

(2.3 
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subscript c denotes central values, then defining the dimensionless variables 5,8 rhere 

3 (2.8) Pg = P d  
r=a t  (2.9) 
Mr = 47rp,a3 V(5) (2.10) 

a2 = uc2/?rGp, (2.11) 

@d V O  by 

*here r is the distance from the centre, M, is the mass inside radius r and 

@ions (2.5) and (2.6) become 

(2.12) 

dV/dt=t203(l+Aue).  (2.13) 

are the general-relativistic equations of hydrostatic equilibrium in the core and 

e(o) = 1 V(0) = 0 (dO/dg+O as 5+0). (2.14) 

Unlike the complete model, the total radius and mass of a model cannot, in this case, 
bedefined since the solutions to equations (2.12) and (2.13) do not extend to the 
surface. We can, however, define the interfacial values of mass and radius (the interface 
being the point where the core joins the envelope). 

a ~ e  to be solved subject to the usual boundary conditions 

The interfacial radius, ri is given by 

ri = ati (2.15) 

and the interfacial values of the gas density and pressure are respectively 

(2.16) 

Pi=pEe4=K(P)Pp. 4/3 ei. 4 (2.17) 

Hence, the total energy density at the interface is given by 

pic2 = psc2 +Api 

and the mass inside the interface is 

(2.18) 

(2.20) 
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By analogy with the core we introduce the dimensionless variables 6 and '1 dem 
by 

PgI= P d 3  (2.21) 
where the value p, is identical to that in equation (2.8) and 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
and 

a:= ulc2/?rGpw (2.26) 

The equations of hydrostatic equilibrium for the envelope then take on the form 

(2.27) 

(2.28) 

Although in general the solutions to (2.27) and (2.28) will not be the usual 
general-relativistic generalizations of the Lane-Emden solutions since they do not 
extend to the centre, we can, nevertheless (Hargreaves 1972), define the total mass, 
radius etc of the model. The outer surface is taken to correspond to the smallest positive 
value TJ, for which 

4(%) = 0. 
The total radius and the total mass are then given by 

R = a1TJs 

and 

M = 4rP,ff; vi('%). 

(2.29) 

(2.30) 

Similarly, the interfacial values of the various parameters within the envelope may 

Ti = ff ITJi (2.31) 

413 4 (2.32) 

P&C2 = pgS4: (2.33) 

be written 

~ l i  = K I ( B ~ P ,  4i 

and 

Pli = PgliC2+AlPli 

and the mass inside ri given by 

k f i  = 4TP,ff: vi (Ti). 

(2.34) 

(235) 
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a bomdary conditions sbterfo 
wwtions of equilibrium, both in the core and in the envelope, are solved subject to 

sios pressure is to be continuous everywhere, including the interface, the values 
d d  to this quantity in equations (2.17) and (2.32) must be identical. Thus 

conditions at the interface. 

pi = ~ 1 ,  = K(B)P:'~ = ~ l ( ~ ~ p , 4 { , 3 -  

Ul/G = Kl(BJ/K(B) (3.2) 

ri/u = (8i/4J4. (3.3) 

(3.1) 

usingthe definitions of (T and c1 we have 

sobton using (3.2), (3.1) and the definitions of 8 and 4 we obtain 

we can obtain further relations from the fact that the respective values of ri and Mi 
incore and envelope must be identical. Hence 

and 

m gives 

01 

and 

One further condition is needed in order to solve the equations of equilibrium and 
thisisafforded by the continuity of temperature. This is chosen since it has been shown 
by Durgapal and Gehlot (1971) that density may have discontinuity across the 
h l d a r y .  

Since we are considering a perfect gas 

1 k  
P=-(-) B P H  pgT (3.9) 

The % boundary conditions (3.31, (3.7), (3.8) and (3.1 1) are sufficient to Solve 
'quah0ns (2.121, (2.13), (2.27) and (2.28). 
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4. Bindingenergy 

We define the binding energy Eb of a star as the total energy of the bound system 
exclusive of the rest mass energy of the unbound particles dispersed to infinity at zem 
temperature. Hence 

Eb= (MOg- M)C2. (4.1) 

In this expression, Mog is the rest mass of the gas and M is the total mass of &e star. 
For our composite model we can write (4.1) as 

0 % 
2 Af2 2 4rpgc2 eAI2r2 dr- I, 4rpc2r2 dr - /vi 4.rrpc2r2 dr 

€1 r d r + r  
4TPgC e 

0 

(4.2) 
where the 'proper' element of volume has been employed to calculate the restmmM,, 
Substituting for e*l2 and eliminating pg we can write 

-&= I, 4rAp[l -(2GMr/rc2)]-1/2r2 dr+ I,,: 4rAlp1[l -(2GM,/rc2)]r2 dr 
€i 

+r4rpc2{l-[l-(2GMr/rc 2 >3 -1/2 }r 2 dr 

+~, ,~4rplcz{l-[ l - (2GM,/r~2)]~' /Z}r2d~ (4.3) 

where any dynamical energy arising from bulk motions throughout the star has been 
neglected since we are considering the state of hydrostatic equilibrium. 

In terms of the dimensionless variables 6, 0, V, 7, 4, V,, equation (4.3) becomes 

(4.4 

(4.5) 
where we have used 
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terns and neglecting those of the order ( ~ G M / R c ' ) ~  and above we 
j,, be post-Newtonian approximation obtaia 

This may be written 

where 

(4.6) 

and 

(4.9) 3 A  1 3 A1 1 
4 3  2 U1 

+- ( --- )( - , ) 'I2 loei V2e3 d5+; (7-1) 1-r V243 dq]. 

It can be shown that (4.6) reduces exactly to the expression for binding energy 
C'b~nedby Fowler (1964) for a complete polytropic model of index three providing we 

the interface to the surface and make the same assumptions as Fowler that A 3 
ex@Pt in the classical term where (;A - 1) = i. Then from figure 1 which shows the 
bemionless binding energy as a function of the relativistic parameter U for various 
YaluesofB, assuming that the interface is extended to the surface so that the model 
"lSts of all core, it can be Seen that, except perhaps for CT = 0.005 and @ = 0.1, these 

would be unstable for all values of @ and U which we are considering. Thus 
anh"pating the results exhibited in figures 2 and 3, for models consisting of core and 
e o v e l o ~  for various positions of the interface ti, we see that the introduction Of an 

exerts a stabilizing influence. Further, from figure 3 we see that for Small ti 
of nearly all envelope) the critical radius is comparatively Small SO 

that consisting of all envelope are very stable. 
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Flgme 1. Dimensionless binding energy against U for configurations mnsistingof alleore. 

5. criticalradius 

Using the expression (4.7) for the binding energy of the model we obtain the valueofthe 
critical radius, R, by differentiating with respect to the total radius, and equating to 
zero: 

Thus 
R,/R, = X / 2 Y  (5.2) 

where X and Yare given by (4.8) and (4.9). A summary of values of (R,/Rs) for various 
models is given in table 1. It is seen that (R,/R,) depends strongly on the POSitiOnof 
the interface as well as on the values of p and U, and p1 in the envelope. 

6. Numericalresults 

The equations of hydrostatic equilibrium, in the core ( (2 .12 )  and (2.13)) and in ' 
envelop ((2.27) and (2.28)) were solved numerically using a fourth-order R m r  
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T&le 1. Summary of values of RJRS and R&(p,) X 10' for various values of ei, 0, p and 
El. 

0 5  
1.0 
1.5 
0 5  
1.0 
1.5 
2.0 
2.5 
0.5 
1.0 
1 -5 
2.0 
0.5 
1.0 
1-5 
2.0 
2.5 
0.5 
1.0 
1.5 
2.0 
0.5 
1 *o 
1.5 
2.0 
2.5 
3: 0 
0.5 
1.0 
1.5 
0.5 
1.0 
1 *5 

0-5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
0.5 
1.0 
1.5 
2.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 

0-005 

0.005 

0.005 

0.005 

0.005 

0.005 

0.01 

0.01 

0.01 

0.01 

0.01 

0.005 

0.005 

0.01 

0.01 

0.02 

0.02 

0.005 

0.01 

0.01 

0.02 

0.02 

0.05 

0.1 

0.05 

0.1 

WO5 

0.1 

0.1 

0.1 

0.5 

0.1 

0.5 

6.52x lo-' 
1.65 

CO 

1-94 X lo-' 
6.60 x lo-' 
1.58 
3.30 

CO 

1.58 
2.49 
4.23 

CO 

3.09 X lo-' 
7.90 x lo-' 
1.69 
3.28 

03 

5.71 
6.06 
7.20 

CO 

7.49 x lo-' 
1.18 
2.03 
3.41 
5.42 

CO 

5.45 x10-' 
1.86 

8.64 x lo-' 
2.21 

4.98 x lo-* 
2.26 x1O-I 
6-64 x lo-' 
1 a62 
3.60 
7.61 

CO 

CO 

CO 

2.08 
3.30 
5-70 

CO 

5.88 X IO-* 
2.39 x lo-' 
6.70 X lo-' 
1.59 
3.40 
6.80 

CO 

72-03 
71.30 

03 

27.18 
30.93 
43.20 
67.34 

CO 

101.27 
87.69 

101.07 
a3 

34.13 
34.07 
44.52 
65.64 

CO 

128.00 
123.18 
130.05 

00 

47.88 
41.73 
48.57 
65.01 
91.44 

CO 

27-30 
31-46 

CO 

34.27 
34.61 

CO 

2.82 
4.01 
6.75 

12.32 
23.43 
45.59 

48.25 
42.34 
49.97 

3.07 
4.10 
6.72 

11.98 
22.05 
40.66 

CO 

03 

CO 
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Table 1-ntinued. 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
0.1 
0.3 
0.5 

0.1 
0.3 
0.5 
0.7 
1.0 
0.1 
0.3 
0.5 
0.7 
1.0 
0.1 
0.3 
0.5 
0.7 
1.0 

0.01 0.1 0.5 2.32X lo-' 
4,OOX lo-' 
7.84X lo-' 
1.47 
2.55 
3.96 
5.52 
6.99 

0.02 0.005 0.05 2.85 
3,42 
00 

0.02 0*005 0- 1 3.61 X lo-' 
7.59x lo-' 
1.52 
2.65 

CO 

0.02 0.01 0- 1 1.34 
1-62 
2.39 
3.57 

0.02 0.02 0.1 5.24 
5-27 
5.68 
6.64 

CO 

CO 

5-37 
5.13 
6.87 

10-41 
15.93 
23.23 
31.38 
39.13 

124.62 
81.92 

48.05 
30.13 
27.54 
28.29 
a 

iu 

58.83 
41% 
34.55 
33.14 

62.64 
5744 
48.99 
44.43 

m 

CO 

Kutta method. The integrations in equation (4.6) were then evaluated in order to ob& 
a numerical result for the binding energy and the ratio of (R,/Rs). A summarYoftbe 
results for various U, 0 and PI, is given in table 1. 

Values of R,/Rs were obtained by applying (5 .2)  to all those models with aPositive 
binding energy. Those which exhibited a negative binding energy were faken 
represent unbound systems having an infinite critical radius. A summary of resdB Of 
the ratio (R,/Rs) against the interfacial radius ti is shown in figure 2 for various! and 
PI, and Q = 0.005. 

The interesting fact is that these graphs exhibit a minimum. This can be explained 
because of the rapid increase in mass of these models with increasing ti. Since Rsir 
directly proportional to the total mass M, of the model, as the mass increasessodOesR? 

del,* Thus, although the critical radius R,, may increase with ti for one particular 
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0 1 I 2 3 4 

t ,  

Figure 2. Rc/Rs  against Ci for U = 0.005. 

kaSe may be completely masked by the increase in Rs. We shall thus consider the 
aml radius. 

Toobtain graphs showing the way in which the critical radius varies with ti we make 
PFeofthevdues of Vl(qs) obtained at each ti from the solutions of equations (2.12) and 
12.13)and (2.27) and (2.28). 

Consider 

M= 47rp,a:V1(7)s) 
@dwsubstituting for a, we have 

(6.1) 

x, 'Ibe@9hs 2 Qf (R,/R,) against ti give us the value of K , ( R , / M )  at various Si, where ' /2G. multiplying the value of (R,/R,) at ti (call it (R,/Rs)& and the value 
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of Vt(qs) for this model (call this [ Vl(qs)]si) we obtain: 

where K2(p&) = (7rG3pg3'/'/4c3 is a function of the central density, thus 

(63) 

(6.4) 

where 

K3(P%) = KIKZ(P$ = (.irGp,)'/*/8c2. 

Hence, by multiplying our two graphs together and multiplying by U:/' (where @, is 
the value of the relativity parameter in the envelope for the particular model in 
question) we can plot a graph of the same form as R, against ti for a modelwithfixdp,. 
We multiply by U:" even though c1 is a constant throughout one model 8 to 
maintain the correct relationship between different graphs with varying U,. Differing 
central densities between models are taken acount of by altering the value of 
which then has the effect of moving the graph up or down relative to the axis RcK3(pd. 

Plots of R,K3(P$ against ti are shown in figure 3 where a constant central density 
has been assumed throughout for all models. It is seen that the critical radius depends 
strongly on the position of the interface, increasing steadily for small values of (,and 
then more rapidly as ti increases, the core having more and more effect. Initially (when 
the configuration consists mainly of envelope) the value of u1 foJ: a given small B,, 
determines the relative stability of the models, but as ti increases (the configuration 
consisting of more and more core) the value of R,  becomes strongly dependent on the 
value of f l  in the core. The effect of IT and PI on the stability of the models is also clearly 
demonstrated. Models with U equal to 0.3 and above were found to have no stable 
solutions for ti 3 0.5, whereas those models with U equal to 0.2 and below exhibited 
stable solutions, stability increasing with decreasing U. 
On the other hand those models with larger values of p1 in the envelope are Seen 

be far more stable than those with smaller values of PI as expected. 
Also as the core increases in size the models become more and more unstable,ndY 

all becoming unbound before reaching the state where they consist entirely of cOre.Iti 
interesting, therefore, io consider under what conditions a model will remain Stable 
even when the stabilizing effect of the envelope has been removed. For small U andl  
we can make use of Fowler's approximation for the binding energy of a "PIete 
polytropic model of index 3:  

-Eb/MC2= - ~ ~ ( R s / R ) + ~ ; ( R s / R ) ~ + .  . . 
where 

f ;  =5(3/.ir)'/'R3. 

For the stability of this model 

d/dR(Eb/Mc2) B 0 

so that the condition for stability is 

B B Y f ; ( R s / R ) .  

(6.5) 

(6.61 

(6.7) 
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I 
/ 

/ /s=0.02 
i 

i b=O.OZ i 
/ 

I 

I 
/ 

Fignre 3. R,K3(pg) against &. 

*bhg for (R,/R) from (4.5) and using (6.6) we obtain 

B a(3/41’*(8q Vdqs)/qs). (6.8) 
It should be remembered that (6.8) is only an approximation for the models in this 

~ r @ V h W s  an idea of the size of p in the core needed for the model to remain stable 
‘ ‘ ~ ~ i . ~ d  as expected the only model to remain stable for the complete range of ti 

‘eonclusion we see that given a core consisting of matter and radiation for which P, 
‘“bp Of gas Pressure to total pressure, is a small constant, the fitting of an envelope Yfh has a significant effect on the stability of the configuration. The critical 
FatwbChinstability sets in decreases rapidly as the size of the envelope relative to Core Also the stabilizing effect of the envelope increases with increasing 

t h ~ ~  Paper is the only one to satisfy this inequality. 

81. 
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